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ABSTRACT

The objectives of the pattern recognition tasks are to develop
(a) a man-machine interactive data processing system and (b) procedures
to determine effective features as a function of time for crops and
soils.

The Signal Analysis and Dissemination Equipment, SADE, is being
developed as a man-machine interactive data processing system. SADE
will provide imagery and multi-channel analog tape inputs for digitation
and a color display of the data. SADE is an essential tool to aid
in the investigation to determine useful features as a function of time
for crops and soils.

Four related studies are: (1) reliability of the multivariate
Gaussian assumption, (2) usefulness of transforming features with
regard to the classifier probability of error, (3) advantage of
selecting quantizer parameters to minimize the classifier probability
of error and (4) advantage of using contextual data.

The initial objective of developing an interactive system will
be almost complete at the end of April with the installation of SADE
(Signal Analysis and Dissemination Equipmant). Classification programs
already developed such as K CLASS, Bayes and contextual data will be
utilized with SADE. Boundary detection algorithms which are being
worked on will also be utilized. In order to speed up processing,
a variable quantizer with parameters which are specified by the operator,
has also been implemented.

The study of transformation of variables (features), especially
those experimental studies which can be completed with the SADE system,
will be done. The multivariate Gaussian assumption will either be
Jjustified and/or nonparametric techniques will be applied to imagery
data. The secondary objective of determining effective features for
cyops and soils will not be achieved until the SADE system is operation-
al.



INTRODUCTION

The objectives of the pattern recognition tasks are to develop
(a) a man-machine interactive data processing system and (b) procedures
to determine effective features as a function of time for crops and
soils.

This paper reports on the progress made toward achieving these
objectives. The specific projects done and currently in progress are -
considered necessary to aid in the specification of data processing and
classification techniques.

To assume that the data or features are multivariate Gaussian is
sometimes unreliable. Therefore, in computer simulation studies when
pseudo-random number generators are used to generate the feature
vectors with specified statistical parameters, a criteria to judge the
probability of the data being from the specified probability density
function is required. The Kolmogorov-Smirnov test is used to determine
if the pseudo-random number generator produced Gaussian data.

Another problem area is to determine the advantages and disadvan-
tages of transforming the measurements. Experimental work by Nalepka
(1? has shown the advantage of the ratio technique.

In this paper the ratio transformation is considered. However; the
effect of noise is implied to be additive. The case of multiplicative
noise should also be pursued.

The selection of quantizer parameters for a two-class probability
of error in classification experiments. A study to evaluate the con-
ditions necessary to provide this decreased probability of error is in
progress. The purpose and method of the study is discussed.



The man-machine interactive data processing system is referred
to at the Remote Sensing Institute as the Signal Analysis and Dissemi-
nation Equipment, SADE. This system is described and plans for its
use indicated.

The work on transformations of Gaussian variates (3) was done by
John E. Boyd, previously a graduate student in the Electrical Engineer-
ing Department at South Dakota State Unijversity.

The remainder of the reported work was done at the Remote Sensing
Institute at South Dakota State University in Brookings, South Dakota.
The work was performed under grant number NGL 42-003-007 which is
supported by the Office of University Affairs and the Earth Observations
Office of NASA.

MULTIVARIATE GAUSSTAN ASSUMPTION

A very common assumption made by investigators is that the
features used to represent the pattern classes are multivariate
Gaussian. To validate the Gaussian assumption is not a trivial task.
Papoulis (4) discusses the bivariate Gaussian case. If the joint
probability density function is bivariate Gaussian it is also true that
the marginal probability density functions are also Gaussian. However,
if the marginal probability density functions are Gaussian the joint
probability density function is not necessarily bivariate Gaussian..

To study by computer simulation methods the effectiveness of
contextual data requires the use of a pseudo-random number generator.
The generation of Gaussian random variates can be conveniently done by
the use of the IBM subroutines GAUSS and RANDU. RANDU generates a
uniform random number between zero and one by a power residue method.
GAUSS requires twelve uniform random numbers to generate one Gaussian
random variate. The central 1imit theorem is used with the number of
uniform random numbers set at twelve instead of approaching infinity
in order to make the procedure feasible.

Another method of generating Gaussian random variates is known
as the Muller method (5). The equations which relate T, Y, U and V
are

T=v -2InlU cos(2nv) -
Y=v -2InU Sin(2nV)

The validity of the computer simulation study depends on the
probability density function (pdfg of the data produced by the random
number generators. To test the pdf's the Kolmogorov-Smirnov test



(K-S test) (6) was used on RANDU, GAUSS and the Muller produced pseudo-
random numbers. The results of the K-S test as a function of the
number of samples are presented in Table I.

The results of the K-S test indicate that except in several cases
the pseudo-random numbers have less than 90 percent chance of being
from either uniform or Gaussian pdf's.

GAUSS uses the output of RANDU and the Muller method uses .the
output of RANDU twice, with different seeds as listed in Table I. The
means and variances for RANDU are very good estimates of the specified
population means and variances. The results of the K-S test indicate
that before the computer simulation experiment is performed the
pseudo-random number generator should be evaluated by this test.

TRANSFORMATIONS OF GAUSSIAN VARIATES

In this two-class problem the features selected are denoted X;
and X,. For class one these features are uncorrelated, and each is
Gaussianly distributed with mean zero and variance one. For class two
these features are correlated, and each is Gaussianly distributed with
mean zero and variance one. Therefore class one and two are overlapping
bivariate Gaussian probability density functions. The contours of
;hese two overlapping probability density functions are shown in

igure 1.

To classify the data based on the features X; and X, the Bayes
classifier was derived and the decision boundaries determined. Figure
2 represents the three sigma contours of the class one and two
bivariate Gaussian probability density functions. The decision bound-
aries are shown as hyperbolas. The alpha and beta errors are .216
and .053 respectively with a total error of 0.1345,

It can be shown (4) that Z, the ratio of two Gaussian variates,
X1/X,=Z has an univariate Cauchy probability density function. The pdf
of X; and X, is

f(X;,X5)= 1 exp -1 'g% - 2rX Xp L X3 )
21 010,V 1-r2 2(1-r2) o% G105 0%

For class one the correlation coefficient r is zero and for class two
is .98,



The Cauchy pdf of Z is

VY ap2 0102

£(2) = .
- m[o8(Z-r91)2 + 53(1-r2)]
a2

The classification process is now based on the feature Z which
is the ratio X;/X,. The probability of error is of prime interest.
The Bayes classifier for Cauchy data was derived and the results
determined. The alpha and beta errors are .347 and .130, respectively.
See Figure 3. The total probability of error is .2385. Therefore,
under the assumption of this problem it is obvious that taking the
ratio is not useful to decrease the probability of error. In fact the
probability of error has increased 10.4 percent from 13.45 percent to
23.85 percent.

QUANTIZATION

The effects of using quantized data on classification error was
investigated for a two-class problem involving a single feature or
attribute. The results of this study are summarized here and given
in a Technical Interim Report (7).

A quantizer is best described by its transfer characteristic. The
transfer characteristics for an even and odd equi-interval quantizer
are shown in Figures 4 and 5 respectively. The input to the quantizer
consists of data whose distribution is assumed to be normal. The
effect of the quantizer is to assign a specific value to any of the
data that falls in a given range. The value for r, the quantization
interval, is constant for a given quantizer but varies with the number
of Tevels.

The output of the quantizer consists of NQ values where NQ is
the number of quantize levels. Each of these NQ values is weighted by
the area under the normal curve within the input range as given by
the transfer characteristic. For the multi-sample problem, the pdf
(probability density function) is multinomial. This is due to the
fact that the output consists of NQ levels. If only two levels are
present, then the sampled data is distributed binomially.

For the one sample case, the pdf for the data is the output pdf
of the quantizer. The probability of error is given by

P(E) = q0 + 58



where q; and g, are probabilities of occurrence for each of the two
classes. At the output of the quantizer, the probability of error is
a summation given by

N - .
Pq(E) = (q,/2) gN+1[erf{uk+1+s)//§E} - erf{(u, +s)//20}]

N _
+ (qz/z)é—l[erf{(uk+1+s-u)//Z§} - erf{(uk+sJu)//?3}].

for the normal case. This reduces to
Pq(E) = (9,/2) [1-erf{(uy,,+s)/V20}]

+ (q,/2) l+erf{(uy,  +s-u)/v/20}]1.

N+1

In the ange equations s is a shift factor, uy , is the locati%n of
the (N+1)~" input location. The decision boqu;ry is at the N
impulse. The probability of error is graphed in Figure 6 for various
values of N. The entire graph for each value of N is not given. The
location of equal probability of error are drawn in. The X locates
the minimums. '

To find the location of the minimums involves taking the
derivative setting to zero and solving for the variable in question,
namely r. Solving for r yields

r = {(20%2/u)In(qy/q92) + u-2s3/(2N-NQ).

This value of r gives the minimum probability of error. In fact,
this value makes the probability of error equal to that of the
continuous case. In Figure 7, the probability of error is graph for
two values of r. One case is the derived while the other involves
an r that minimizes the mean-square-error between input and output
derived by Max (8).

As the number of samples increases before a decision is made,
the probability of error decreases in the continuous case. The same
is true of error for the multi-sample case is shown in Figure 8 for
a two and three level quantizer as well as continuous. Ones does get
more probability of error in the quantized case. However, the



differences in error may be acceptable if one is concerned with the
accuracy of the measurement and the cost of obtaining such accuracy.

- CONTEXTUAL DATA

The data that occurs adjacent to the cell of the image to be
classified provides additional information to be combined with the
data of the cell. This additional data is known as the contextual
data, and the information added is contextual information. The
contextual data is added to the decision rule of the classifier b
the following product of sums of probability density functions (2).

y
n z  p(X, |e, ) ple, |6,)
i=1e,  Ki Kio o KK
i

where

p(Xk Iek ) is the conditional pdf of the
i i measurement vector Xk given the
cells identity, O . i
.i

p(e, le,) 1is the conditional pdf of the
j occurrence of the O class given

1
th cel1 identity, and

h

the k

kifs are the nearest neighbors to the kt cell.

The complete decision rule is to

N
Minimize = L(s ,a) p(X |o )G(e,) 1 = p(X [, In(e, lo)
) s_q 6 1 1 1
k i=1 ki :

The terms are:

h

is the kt class.

%
Xk is the optical density measurement of the kthclass.

a is (aj,ag,- - - an).



h

a, is the decision that the kt class is present.

L(ek,a) is the loss associated with making a decision.

The assumptions are that contextual relationships between non-
adjacent cells are negligible which can be stated as

P(Xy16gsX;485) = (X, [X;585)

for all i and cells b and ¢ are nonadjacent. The appearance x, of a
class 6, is a function only of 6,, and if 8, is known neither %he
nature hor the appearance of any other c1as§ provides additional

information about Xk‘ This can be stated as

(X, 18y X:505) = p(X, Jo,).

For a special case of a temporal signal on line scan data this
contextual rule can be more easily interpreted and the effect of the
contextual data illustrated if a two-class problem is discussed. The
next equation specifies the mathematical operations necessary to make
a decision.

p(xklel) .
5 Xk 5 > KM decide 90,
< KM decide ¢,

) G(6o)L(85,a) »
~ G(e1)L(6,,a)

where

and

M = [P(XklIel)p1?+p(Xkl|ez)pp?][p(XkZJ?I)p]9+p(Xk7]e})p?zl

[P(Xkllel)p11+p(xk1|92)921][P(Xk2|91)P11+p(Xk2|92)P21]

The notation P is used for the a priori probabilities p(eilej).



If contextual data is not used the decision rule reduces to

or M is assumed to be unity.

To determine the value of M only the measurements in the nearest
neighbor cells and the a priori probabilities of occurrence of each
class as represented by p.. for all i and j are required. The measure-
ment in cell k provides thd needed data to evaluate the left hand side
of the decision rule. Since the right hand side, the product of K
and M varies one can think of contextual data as providing a decision
boundary which varies as a function of the measured data.

A computer simulation is nearly completed which will provide
a comparison of the probability of error if (a) contextual data are
not used and (b) contextual data are used, as well as these comparisons
for more than one measurement per cell.

The similarity of this simulation to data to be extracted from
imagery should be noted. The cells correspond to data windows whose
width will vary according to field size. The use of the nearest
neighbor cells can be easily extended to be used by obtaining the data
from the preceeding and succeeding scan lines in the respective cells.

The necessity of having line scan data and a procedure to edit
the ground truth data into the system so that it can be used effect-
ively is imperative.

To use this technique on imagery, requires knowledge of at least
the soils type and/or crop type for all fields within the training set.

Only the two class case has been discussed, but generalization to
more classes has been done (2).

SIGNAL ANALYSIS AND DISSEMINATION EQUIPMENT

INTRODUCTION

This section discusses the Remote Sensing Institute's Signal



Analysis and Dissemination Equipment (SADE).

This equipment was designed as a state-of-the-art data analysis
system for a medium cost with highly flexible modular design. The
maximum resolution of any individual module is not as great as may
be achieved at a higher cost. However, the integration of each seg-
ment with a medium high resolution has produced a system of outstanding
capabilities. The SADE system includes the following features:

high resolution, high quality digitization of black and white
and color film transparencies,

35mm, 70mm, 9% inch single frame or roll films may be
accommodated,

multiple frames may be registered with respect to one another
conveniently and accurately,

registration of images can be accomplished off-line without
interaction with the computer,

analog magnetic tape data can be digitized for computer analysis
from one to six channels,

a refresh memory is provided for the display of processed data-
on the video monitor and for multiple frame registration,

refresh memory is expandable for storage of high frame resolution
imaged data and larger display formats,

memory format is Pax II picture processing language (9) oriented
for processing within the computer,

proceséed digital data may be converted to hard copy using a
line printer,

control of the system's components in communication with the
computer is provided via teletype and system control panel.

SYSTEM CONFIGURATION

The system is configured in five major units:

1. The Spatial Data camera, level slicing, and color display
monitor;



2. The image digitizer utilizing an image dissector tube;

3. The data control and conversion unit which contains elements
for high speed memory, analog tape conversion and control
functions,

4, The Lockheed 417 seven track analog tape recorder, and

5. The Daedalus Film Printer.
SYSTEM FUNCTIONS

The SADE system will provide the following system functions:
Visual display of digitized film data,

Digitized image data transmitted to the computér,

Analog tape data digitized and transmitted to the computer,

Processed image data transmitted to the display monitor through
the refresh memory for visual interpretation,

Processed digital data to the Daedalus Printer for 70mm film
output,

Registration of images via the digitizer and display monitor, and

System control.
MODES OF OPERATION

The SADE system can be operated in the image data and analog
tape data digitization modes. The image can be digitized and displayed
on the color monitor, and the digitized data transmitted to the
computer memory. A second image can be digitized and through mechanical
manipulation be registered by observation of the color display which
displays both the first and second images simultaneously through use
of the raster interlaced system. After registration the digitized
data which represents the second image is transmitted to the computer
memory. Likewise, maps may be made, digitized and stored in the
computer memory and the image overlayed on the map on the display.



The image can be quantized according to the optimal quantizer
derived in this paper and the resulting color encoded image displayed
on the monitor. This is one method of classifying the image according
to optical density which has been shown to be useful by Frazee (10).

Classification of the data if multiple features are used will be
done by K-class, Bayes or contextual data classifier algorithms. The
classification results will be color encoded and displayed on the
monitor. '

The digitized image can also be transmitted to the Daedalus printer
for 70mm hard copy.

The analog tape digitization mode of operation provides the
capability to digitize from one to six channels of multi-spectral
data stored on analog magnetic tape. The data can be displayed one
channel at a time on the display. The data can be digitized 6 channels
at a time and transmitted to the computer for storage in digital form.
Possible inputs to the analog tape conversion unit includes thermal
scanner data, multispectral scanner data up to 6 channels and weather
satellite image data.

ANTICIPATED USES OF THE SADE SYSTEM

The SADE system was designed as a flexible research tool for data
processing and data classification which can be expanded. The SADE
system can also be expanded to provide information dissemination
capabilities. These information dissemination capabilities include
television broadcasts, special systems and output copy. The dissem-
ination system chosen will depend upon the specific application and
output form desired by the user. Although the SADE system is designed
as a research tool, it is also anticipated that analysis completed in
the research phases will be implemented in an operational system for
individual users. Thus, a state agency interested in surface water
could use, on an operational basis, information from the ERTS-A
satellite in their daily decision-making processes.

CONCLUDING REMARKS

The objectives of the pattern recognition tasks are to develop
(a) a man-machine interactive data processing system and (b) procedures
to determine effective features as a function of time for crops and
soils.



The initial objective of developing an interactive system will
be almost complete at the end of April with the installation of SADE
(Signal Analysis and Dissemination Equipment). Classification programs
already developed such as K CLASS, Bayes and contextual data will be
utilized with SADE. Boundary detection algorithms which are being
worked on will also be utilized. In order to speed up processing, a
variable gquantizer with parameters which are specified by the operator,
has also been implemented.

The study of transformation of variables (features), especially
those experimental studies which can be completed'with the SADE system,
will be done. The multivariate Gaussian assumption will either be
justified and/or nonparametric techniques will be applied to imagery
data. The secondary objective of determining effective features for
crops and soils will not be achieved until the SADE system is operation-
al.



TABLE I K-S Test Results

PROBABILITY THAT DATA HAS SPECIFIED PDF

Number of RANDU GAUSS MULLER
Samples seed 98765 12345 12345 93765 and 12345

100 35.7 43.3 11.1 64.6

200 46.4 88.4 50.0 92.5

300 81.9 98.8 47.1 88.7

400 88.4 77.3 44.9 77.2

500 99.6 28.0 48.6 90.7

600 - 15.7 10.4

700 10.3 24.8

800 6.0 36.1

900 15.8 29.7
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density functions.
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Figure 3.- Decision boundary for Bayes' classification of two
bivariate Gaussian distributions, r=0.98.
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an even number of levels (four).

L y- (output)

2r
r T
-3r -r
2 2
} }
r 3r x (input)
2 2
T -r
4+ -?2r

Figure 5.- Transfer characteristic for equiinterval quantizer with
an odd number of levels (five).
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